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Section 1: Carbonate Speciation 

A lot of time and effort has gone into quantifying the thermodynamics associated with the 

carbonate system. In terms of the defining equilibria and how to solve these systems of equations 

we refer the reader to a number of well written reviews and textbooks on the subject.[1-3] However 

for clarity we summarise some important aspects here. 

At equilibrium and in the absence of other species the following equations define the equilibrium 

concentration of the calcite ions in a solution in contact with solid calcite:  

CO2(𝑎𝑞) + H2O ⇌ H+ + HCO3
−      (S1.1) 

HCO3
− ⇌  H+ + CO3

2−      (S1.2) 

H2O ⇌ H+ + OH−       (S1.3) 

CaCO3(s) ⇌  Ca2+ + CO3
2−

       (S1.4) 

At equilibrium, and taking the activity of both water and calcite to be unity then the corresponding 

stoichiometric equilibrium constants are:  

𝐾1
∗ =

[H+][HCO3
−]

[CO2]
       (S1.5) 

𝐾2 =
[H+][CO3

2−]

[HCO3
−]

            (S1.6) 

𝐾𝑤 = [H+][OH−]        (S1.7) 

𝐾𝑠𝑝 = [Ca2+][CO3
2−]       (S1.8) 

Here we have six unknown concentrations and so to solve this problem we need two additional 

auxiliary equations: 

2[Ca2+] + [H+] = [OH−] + 2[CO3
2−] + [HCO3

−]                            (S1.9) 

[Ca2+]  = [CO3
2−] + [HCO3

−] + [CO2(aq)]                          (S1.10) 

Equation S1.9 is a statement of electroneutrality and equation S1.10 is a statement of conservation 

of mass; for every calcium dissolved one carbon is added to the solution. Consequently, if we take 

the reported[1] thermodynamic constants that vary as both a function of solution temperature and 

salinity then equations S1.5-S1.10 present a series of 6 simultaneous equations to be solved. It is on 

this basis that the equilibrium ion concentrations for a closed system can be determined. 

Usefully equations S1.1- S1.4 can be recast as: 



CaCO3(s) ⇌  Ca2+ + CO3
2−

    Kr1  (S1.11) 

CaCO3(s) +  H+ ⇌  Ca2+ + HCO3
−

   Kr2  (S1.12) 

CaCO3(s) +  H2O ⇌  Ca2+ + HCO3
−

+ OH−  Kr3  (S1.13) 

CaCO3(s) +  CO2(aq) + H2O ⇌  Ca2+ + 2HCO3
−

 Kr4  (S1.14) 

these four equations are thermodynamically equivalent to those presented earlier and the associated 

thermodynamic constants are: 

𝐾𝑟1 = 𝐾𝑠𝑝         (S1.15) 

𝐾𝑟2 =
𝐾𝑠𝑝

𝐾2
              (S1.16) 

𝐾𝑟3 =
𝐾𝑠𝑝𝐾𝑤

𝐾2
                (S1.17) 

𝐾𝑟4 =
𝐾𝑠𝑝𝐾1

∗

𝐾2
        (S1.18) 

these four equations (S1.11- S1.14) represent four thermodynamic pathways that can, in the absence 

of other acid/base moieties in the solution, drive the calcite dissolution. 

  



Section 2: Surface vs Mass-Transport Control 

Broadly for any interfacial process the rate determining step can be:  

a) Transport of reagents to the interface 

b) Reaction at the interface 

c) Transport of products away from the interface 

Which of these processes is dominant depends on the stoichiometry of a given reaction, the rate of 

the interfacial reaction, the properties of the interface and also the prevailing mass-transport i.e. how 

fast the reagents and products can move to and away from the interface. In this section we are going 

to take a simple example of an interfacial reaction and show how physical changes to the system – in 

this case changing the particle radius – can change which step of the process is rate determining. 

Dissolution of a spherical particle 

Here we consider the simplest dissolution process, a solid spherical particle of M dissolves into 

solution, where in the bulk solution the concentration of M is zero and importantly for this example 

M is only sparingly soluble. Here we will only consider the steady-state solution to this problem. For 

this example reaction, we only need to consider steps b) and c) from the list above. 

Overall the reaction scheme is: 

 

M(s) ⇌ M0(aq, 0)      (S2.1) 

M(aq, 0) ⟶ M(aq, bulk)     (S2.2) 

 

Equation S2.1 is the dissolution reaction leading to the formation of dissolved solution phase M, where 

0 indicates that the species formed at the interface. Reactions S2.2 represents the transport of the M 

species away from the surface into the bulk solution. As we are assuming that the bulk concentration 

of M is zero then we do not need to consider the back reaction of process S2.2.  

The rate of the dissolution reaction is (jdiss / mol m-2 s-1): 

𝑗𝑑𝑖𝑠𝑠 = k𝑑𝑖𝑠𝑠       (S2.3) 

where kdiss is the zeroth order heterogeneous rate constant. The precipitation reaction i.e. the reverse 

of reaction S2.1 is given by: 



𝑗𝑝𝑟𝑒𝑐𝑖𝑝 = k𝑝𝑟𝑒𝑐𝑖𝑝[𝑀]0      (S2.4) 

here kprecip has units of m s-1 and is a first order heterogeneous rate constant. As M is only sparingly 

soluble then we define the solubility as: 

𝐾𝑠 = [𝑀]𝑠𝑎𝑡       (S2.5) 

Consequently, at equilibrium: 

𝑗𝑝𝑟𝑒𝑐𝑖𝑝 = 𝑗𝑑𝑖𝑠𝑠       (S2.6) 

hence, 

𝑘𝑝𝑟𝑒𝑐𝑖𝑝 =
k𝑑𝑖𝑠𝑠

𝐾𝑠
       (S2.7) 

As we are assuming that i) we have a spherical particle, ii) the bulk concentration of M is zero and iii) 

the system is at steady-state, then the rate associated with equations S2.2 is: 

𝑗𝑀𝑇 =
D[𝑀]0

𝑟𝑝
       (S2.8) 

where D diffusion coefficient (m2 s-1) and rp is the radius of the particle (m). Given we are considering 

the steady-state situation then: 

𝑗𝑑𝑖𝑠𝑠 = 𝑗𝑝𝑟𝑒𝑐𝑖𝑝 + 𝑗𝑀𝑇      (S2.9) 

The above expression is essentially saying that the surface concentration of M is fixed and does not 

vary, in this case (the steady-state regime) the formation of dissolved M (jdiss) is equal to its loss via 

precipitation (jprecip) and mass-transport to the bulk (jMT). From equation S2.9 and substituting in 

equations S2.3, S2.4, S2.7 and S2.8 then we can get an expression describing the surface 

concentration of species M: 

[𝑀]0 =
k𝑑𝑖𝑠𝑠𝐾𝑠𝑟𝑝

k𝑑𝑖𝑠𝑠𝑟𝑝+𝐷𝐾𝑠
      (S2.10) 

Substituting this expression into equation S2.8 then we get an expression describing the rate of 

dissolution of the particle: 

𝑗𝑡𝑜𝑡 =
Dk𝑑𝑖𝑠𝑠𝐾𝑠

k𝑑𝑖𝑠𝑠𝑟𝑝+𝐷𝐾𝑠
      (S2.11) 

Clearly this is a simple model but there are some very important features of equation S2.11.  



 

Figure S1: The variation in the heterogenous interfacial rate as a function of particle size as predicted by equation 11 (jtot, 

black line). For small particle radii the rate becomes surface controlled (red zone) and jtot≈kdiss, conversely for large particle 

radii the rate becomes mass transport limited (blue zone) and jtot≈DKs/rp. In between these two limits is a mixed kinetic regime 

(grey) where the interfacial rate is neither at the surface nor mass-transport controlled limit. For comparison the two limiting 

cases of kdiss and DKs/rp are also plotted in red and blue lines respectively. For this example: D = 1x10-9 m2 s-1, kdiss=1x10-6 mol 

m-2 s-1, Ks = 1 mol m-3.  

Figure S1 takes some example parameters and plots how the rate of dissolution of the particle changes 

as a function of the particle size (radius). As can be seen if the particle radius is small then rate of the 

reaction is controlled by the surface reaction rate (kdiss) but as the size of the particle increases then 

the rate changes and becomes controlled by the mass-transport (D[M]0/r). Changing the physical size 

of the particle changes the rate determining step. When the rate is under mass-transport control then 

the dissolution rate (jtot) does not contain information about the magnitude of kdiss. 

The above example is really important when we consider calcite dissolution, whether the reaction rate 

is under mass-transport or surface control can change depending on the how quickly material can get 

to and from the mineral interface. This switch in behavior hinges on the fact that we are recognizing 

that the concentration of species at the interface can be different from that of the bulk solution. For 

an isolated micron sized particle this change in concentration occurs over the distance of about a 

particle radius from the mineral surface. This change in the surface concentration as a function of 

particle size is most clearly seen in considering equation S2.10. If the particle is small leading to the 

dissolution rate being under surface control then the [M]0≈0. Conversely, if the particle is large then 

[M]0≈[M]sat leading to the reaction being under mass-transport control. 

 

  



Section 3: Mass-transport correction 

What is meant by ‘making a mass-transport correction’ as referred to in the main body of the text? 

Let us consider this in the context of the dissolution model presented in Section 1. As shown in Figure 

S1, if kdiss > DKs/rp then the interfacial dissolution rate is less than kdiss and in the limit the overall rate 

becomes equal to DKs/rp. This situation is known as the mass-transport limited regime. Conversely, 

when kdiss ≈ DKs/rp then the overall rate (jtot) is less than either Kdiss or DKs/rp. This transitionary case is 

known as the ‘mixed kinetic regime’. When we are in this so-called mixed kinetic regime, is it possible 

to accurately determine the underlying value of Kdiss from the measured dissolution rate? That is to 

say, can we ‘correct’ the experimentally determined dissolution rate so as to extract the true 

interfacial kinetics of the dissolution process (kdiss)? This question is essentially the same as asking; if 

the surface concentrations are unaltered from that of the bulk (i.e. for the example above if [M]0 = 

[M]bulk= 0) then what is the rate of the dissolution reaction? This problem is directly analogous to the 

problem of extracting heterogeneous rate constants from an electrochemical experiment. Classically, 

in electrochemistry a rotating disc electrode is used and a Koutecky-Levich plot is used to infer the 

true rate constant for an interfacial reaction. 

How accurately the measured rate (jtot / mol m-2 s-1) can be corrected depends not only on the 

uncertainty in the measurement but how well the mass-transport regime is defined. Taking the above 

example of the steady-state flux from a particle isolated in the solution phase, then for a given 

measured interfacial rate, we can rearrange equation S2.11 to give an analytical expression that allows 

calculation of the ‘true’ heterogeneous rate constant (kdiss / mol m-2 s-1): 

k𝑑𝑖𝑠𝑠 =
𝐷j𝑡𝑜𝑡𝐾𝑠

𝐷𝐾𝑠−r𝑝𝑗𝑡𝑜𝑡
      (S3.1) 

If the particle radius, molecular diffusion coefficient and solubility are known to a high degree of 

accuracy then equation S3.1 can be used to extract the heterogeneous rate constant for the 

dissolution reaction. It is important to reflect on the fact that equation S3.1 can only be used if the 

system is accurately modelled as a particle isolated in solution where the mass-transport to and from 

the interface only occurs via diffusion and there is no particle agglomeration/aggregation. The possible 

influence of convection and particle agglomeration/aggregation has not been considered and as 

discussed at length in the main body of the text, for some experimental cases these factors can have 

a significant influence on the measured rate. The accuracy of the mass-transport correction depends 

on the accuracy of the used model. 

As will be explored further below (section 5) if the mineral particles are not well isolated in solution, 

as is the case for example in a sediment, then equation S2.11 cannot be applied. It perfectly possible 



for the mass-transport limited reaction rate to be orders of magnitude below the true heterogeneous 

reaction rate. 

 

  



Section 4: Literature examples 

In terms of studying calcite dissolution in genuine or artificial seawater samples one experimental 

problem is that at atmospheric pressure and room temperature most seawater-like samples are 

oversaturated with respect to calcite. Consequently, the only easily accessible experimental method 

to studying calcite dissolution in these solutions is to partially acidify them. For a solution containing 

10 mM Ca2+ and 2.3 mM dissolved inorganic carbon then a pH of ~7.37 is required for the solution to 

be at the saturation level. The addition of further acid will lead to the system being undersaturated. 

This is a commonly used technique where the rate of calcite dissolution is then measured in this acid 

adjusted undersaturated solution. One potential problem for this method is that the dissolution is not 

being studied at a pH comparable to the conditions under which dissolution occurs in the ocean. 

Further, there is often only a limited evidence that the system is not being studied at or near the mass-

transport limit. 

 

Figure S2: Calcite dissolution rate in artificial seawater as a function of undersaturation state and the influence of the addition 

of carbonic anhydrase (CA). Ω is the saturation state of the solution with respect to calcite. Data reproduced with permission 

from Subhas et al. (2017)[4] (Copyright 2017 National Academy of Sciences). Overlaid on the original experimental data is the 

dissolution rate predicted for a diffusion limited flux away from the particles with an assumed diffusion layer thickness of 100 

µm (black line). This estimate of the mass-transport limit is subject to significant uncertainty as discussed in the text and as 

highlighted in the figure the exact value is altered by the physical state of the system. Importantly however, at high 

undersaturation even in this artificial seawater media the dissolution rate is apparently at least comparable to the mass-

transport limited flux (a mixed kinetic regime). Indicating that accurate determination of the interfacial reaction rate under 

these conditions may require mass-transport correction of the measured rate.  

 



For example, in the work of Subhas et al. the dissolution of a suspension of 13C labelled calcite particles 

is studied in an artificial seawater sample.[4] The solution was acidified so as to adjust the saturation 

state of the sample. One of the key results of this work is reproduced in Figure S2, where the authors 

of the original work demonstrate that at all calcite saturation levels (Ω) the dissolution kinetics are 

sensitive to the presence and concentration of carbonic anhydrase suggesting that under these 

conditions the hydration kinetics of CO2 is important in controlling the dissolution rate. However, if 

we assume a diffusion layer thickness of 100 µm then we can see that at high under saturation the 

reported data seems to be approaching the estimated mass-transport limit and this may give physical 

insight into why the reaction is less sensitive to the presence of carbonic anhydrase at high 

undersaturation. Note that these high undersaturation results are essentially comparable to 

measurements independently made by Cubillas et al. in a fresh water sample.[5] As discussed in detail 

in the main text, due to ambiguities in the mass-transport properties of the system quantitative 

analysis of the mass-transport limited flux is challenging where differences in the particle size, surface 

roughness, agglomeration state and the influence of convection can all alter the expected flux. This 

issue is compounded in the work of Subhas et al.[4] where they do not explicitly state the used particle 

grain size in the text however on the basis of their cited previous work[6] where particles in the range 

of 70-700 µm are used then a value of 100 µm for the diffusion layer thickness seems like a reasonable 

guesstimate. Note in this work[4] they conclude that the reaction is not approaching the mass-

transport limit on the basis of calculations made using an assumed and plausibly erroneous diffusion 

layer thickness of 10 µm and they further state that the measured kinetics are insensitive to the 

solution being mixed on a plate which moves at a rate of 60-90 rpm. Given the likely size of the 

particles and the low rates of mechanical mixing it does not seem likely that a diffusion layer thickness 

of 10 um is a good estimate but in the absence of better experimental data and/or information this 

remains ambiguous. 

  



Section 5: Relating Homogeneous and Heterogeneous Kinetics 

As discussed in the main body of the text, in some geological articles the calcite dissolution kinetics 

are modelled as a homogeneous process: 

𝑑[CaCO3]

𝑑𝑡
=  −𝑘𝑐[CaCO3](1 − 𝛺)𝑛     (S5.1) 

this pseudo first order rate constant (kc / s-1) can, if the reaction is at the surface limit, be directly 

related to the heterogeneous rate constant (khet / mol m-2 s-1). Conventionally this is done using the 

following expression: 

𝑘𝑐 =  𝑘ℎ𝑒𝑡𝑆𝑔𝑀𝑤       (S5.2) 

where Sg is the specific surface area of the material (m2 g-1) and Mw is the calcite molecular weight (g 

mol-1). For an isolated spherical particle Sg can be analytically defined as: 

𝑆𝑔 =
3𝑅𝑓

𝑟𝑝𝜌
        (S5.3) 

Substitution of equation S5.3 into equation S5.2 yields equation 5 in the main body of the text which 

relates the pseudo homogeneous to the heterogeneous rate constant. Although correct the above 

slightly obscures the connection between these two rate constants. In the following an alternative 

derivation is given. We will consider the case in which the dissolution is at high undersaturation such 

that Ω = 0. For a surface-controlled rate with a heterogeneous rate constant khet then for a spherical 

particle the dissolution rate on a per particle (Jparticle / mol s-1) basis is given by: 

𝐽𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑠𝑢𝑟𝑓 = 4𝜋𝑟𝑝
2𝑅𝑓𝑘ℎ𝑒𝑡      (S5.4) 

where rp is the radius of the particle (m) and Rf is the particle roughness factor that is the ratio between 

the actual and geometric surface area of the particle. In order to get the total dissolution rate then 

equation S5.4 needs to be multiplied by the particle number density n (m-3): 

𝑑[𝐶𝑎𝐶𝑂3]

𝑑𝑡
= −𝑛𝐽𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒       (S5.5) 

n for a spherical particle can be defined as: 

𝑛 =
3𝑀𝑤[CaCO3]

4𝜋𝑟𝑝
3𝜌

        (S5.6) 

Equations S5.6 and S5.5 directly lead to the definition of kc given in equation 5 of the main text. This 

result is only valid if the reaction is at the surface limit.  

In contrast in the case of a mass-transport limited rate then: 



𝐽𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑀𝑇 = 4𝜋𝑟𝑝𝐷(𝐶𝑒𝑞 − 𝐶𝑏𝑢𝑙𝑘)     (S5.7) 

Notably this expression (equation S5.7) does not contain Rf as the mass-transport limited rate is 

proportional to the geometric as opposed to true surface area of the particle. Equation S5.7 and S5.5 

allow equation 6 in the main text to be directly derived. 

The above has considered two simple examples where the reaction is occurring at a particle that is 

isolated in solution. If the inter-particle separation is comparable or smaller than the extent of the 

diffusion layer then this assumption of isolation is not valid.  

What happens if we have a relatively dense layer of particles? Let’s assume we have a layer of 

thickness, L (m), and that a fraction, f, of the layer is filled with calcite on a volume basis and the rest 

is solution. If there is no transport out of this layer then the calcite will come to equilibrium with the 

solution in the layer leading to the solution being saturated with respect to calcite (Ceq). If this layer is 

put in contact with a completely unsaturated seawater solution then the calcite dissolved in the layer 

will diffuse out of the layer. The mass-transport out of the layer is (in units of mol m-2 s-1): 

𝑗𝑀𝑇,𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =
𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑒𝑞−𝐶𝑏𝑢𝑙𝑘)

𝛿
     (S5.8) 

furthermore the amount of calcite depends on the depth of the layer considered: 

𝛤 =
𝐿𝑓𝜌

𝑀𝑤
         (S5.9) 

here 𝛤 is essentially an effective surface coverage and has units of mol m-2. 

Hence, 

𝑘𝑐,𝑀𝑇 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =
𝑗𝑀𝑇,𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝛤
      (S5.10) 

Equation S5.8 is expressing that the flux out of the layer is, in this model, independent of the thickness 

of the sediment layer being considered and so as the sediment layer gets thicker the effective 

homogeneous reaction rate decreases. Equation S5.10 leads directly to equation 7 of the main text. 

Note the effective calcite ‘concentration’ in the layer is: 

[CaCO3] =
𝑓𝜌

𝑀𝑤
        (S5.11) 

Hence the dissolution rate is simply, 

𝑑[𝐶𝑎𝐶𝑂3]

𝑑𝑡
= −

𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑒𝑞−𝐶𝑏𝑢𝑙𝑘)

𝛿𝐿
= −𝑘𝑐,𝑀𝑇 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡[CaCO3]   (S5.12) 
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